Keldysh formalism

In non-equilibrium physics, the Keldysh formalism is a general framework for describing the quantum mechanical evolution of a system in a non-equilibrium state or systems subject to time varying external fields (electrical field, magnetic field etc.). Historically, it was foreshadowed by the work of Julian Schwinger and proposed almost simultaneously by Leonid Keldysh and, separately, Leo Kadanoff and Gordon Baym. It was further developed by later contributors such as O. V. Konstantinov and V. I. Perel.

Extensions to driven-dissipative open quantum systems is given not only for bosonic systems, but also for fermionic systems.

The Keldysh formalism provides a systematic way to study non-equilibrium systems, usually based on the two-point functions corresponding to excitations in the system. The main mathematical object in the Keldysh formalism is the non-equilibrium Green's function (NEGF), which is a two-point function of particle fields. In this way, it resembles the Matsubara formalism, which is based on equilibrium Green functions in imaginary-time and treats only equilibrium systems.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.