Joule heating
Joule heating (also known as resistive, resistance, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.
Articles about |
Electromagnetism |
---|
|
Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, states that the power of heating generated by an electrical conductor equals the product of its resistance and the square of the current. Joule heating affects the whole electric conductor, unlike the Peltier effect which transfers heat from one electrical junction to another.
Joule-heating or resistive-heating is used in multiple devices and industrial process. The part that converts electricity into heat is called a heating element.
Among the many practical uses are:
- An incandescent light bulb glows when the filament is heated by Joule heating, due to thermal radiation (also called blackbody radiation).
- Electric fuses are used as a safety, breaking the circuit by melting if enough current flows to melt them.
- Electronic cigarettes vaporize propylene glycol and vegetable glycerine by Joule heating.
- Multiple heating devices use Joule heating, such as electric stoves, electric heaters, soldering irons, cartridge heaters.
- Some food processing equipment may make use of Joule heating: running current through food material (which behave as an electrical resistor) causes heat release inside the food. The alternating electrical current coupled with the resistance of the food causes the generation of heat. A higher resistance increases the heat generated. Ohmic heating allows for fast and uniform heating of food products, which maintains quality. Products with particulates heat up faster (compared to conventional heat processing) due to higher resistance.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.