7-orthoplex

In geometry, a 7-orthoplex, or 7-cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cells 4-faces, 448 5-faces, and 128 6-faces.

Regular 7-orthoplex
(heptacross)

Orthogonal projection
inside Petrie polygon
TypeRegular 7-polytope
Familyorthoplex
Schläfli symbol{35,4}
{3,3,3,3,31,1}
Coxeter-Dynkin diagrams
6-faces128 {35}
5-faces448 {34}
4-faces672 {33}
Cells560 {3,3}
Faces280 {3}
Edges84
Vertices14
Vertex figure6-orthoplex
Petrie polygontetradecagon
Coxeter groupsC7, [3,3,3,3,3,4]
D7, [34,1,1]
Dual7-cube
Propertiesconvex, Hanner polytope

It has two constructed forms, the first being regular with Schläfli symbol {35,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,3,31,1} or Coxeter symbol 411.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 7-hypercube, or hepteract.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.