6-orthoplex

In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 vertices, 60 edges, 160 triangle faces, 240 tetrahedron cells, 192 5-cell 4-faces, and 64 5-faces.

6-orthoplex
Hexacross

Orthogonal projection
inside Petrie polygon
TypeRegular 6-polytope
Familyorthoplex
Schläfli symbols{3,3,3,3,4}
{3,3,3,31,1}
Coxeter-Dynkin diagrams
=
5-faces64 {34}
4-faces192 {33}
Cells240 {3,3}
Faces160 {3}
Edges60
Vertices12
Vertex figure5-orthoplex
Petrie polygondodecagon
Coxeter groupsB6, [4,34]
D6, [33,1,1]
Dual6-cube
Propertiesconvex, Hanner polytope

It has two constructed forms, the first being regular with Schläfli symbol {34,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,31,1} or Coxeter symbol 311.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 6-hypercube, or hexeract.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.