Kleene–Brouwer order

In descriptive set theory, the Kleene–Brouwer order or Lusin–Sierpiński order is a linear order on finite sequences over some linearly ordered set , that differs from the more commonly used lexicographic order in how it handles the case when one sequence is a prefix of the other. In the Kleene–Brouwer order, the prefix is later than the longer sequence containing it, rather than earlier.

The Kleene–Brouwer order generalizes the notion of a postorder traversal from finite trees to trees that are not necessarily finite. For trees over a well-ordered set, the Kleene–Brouwer order is itself a well-ordering if and only if the tree has no infinite branch. It is named after Stephen Cole Kleene, Luitzen Egbertus Jan Brouwer, Nikolai Luzin, and Wacław Sierpiński.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.