Jordan–Pólya number
In mathematics, the Jordan–Pólya numbers are the numbers that can be obtained by multiplying together one or more factorials, not required to be distinct from each other. For instance, is a Jordan–Pólya number because . Every tree has a number of symmetries that is a Jordan–Pólya number, and every Jordan–Pólya number arises in this way as the order of an automorphism group of a tree. These numbers are named after Camille Jordan and George Pólya, who both wrote about them in the context of symmetries of trees.
These numbers grow more quickly than polynomials but more slowly than exponentials. As well as in the symmetries of trees, they arise as the numbers of transitive orientations of comparability graphs and in the problem of finding factorials that can be represented as products of smaller factorials.