Dirac–Kähler equation
In theoretical physics, the Dirac–Kähler equation, also known as the Ivanenko–Landau–Kähler equation, is the geometric analogue of the Dirac equation that can be defined on any pseudo-Riemannian manifold using the Laplace–de Rham operator. In four-dimensional flat spacetime, it is equivalent to four copies of the Dirac equation that transform into each other under Lorentz transformations, although this is no longer true in curved spacetime. The geometric structure gives the equation a natural discretization that is equivalent to the staggered fermion formalism in lattice field theory, making Dirac–Kähler fermions the formal continuum limit of staggered fermions. The equation was discovered by Dmitri Ivanenko and Lev Landau in 1928 and later rediscovered by Erich Kähler in 1962.