Hölder's inequality
In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces.
Hölder's inequality — Let (S, Σ, μ) be a measure space and let p, q ∈ [1, ∞] with 1/p + 1/q = 1. Then for all measurable real- or complex-valued functions f and g on S,
If, in addition, p, q ∈ (1, ∞) and f ∈ Lp(μ) and g ∈ Lq(μ), then Hölder's inequality becomes an equality if and only if |f |p and |g|q are linearly dependent in L1(μ), meaning that there exist real numbers α, β ≥ 0, not both of them zero, such that α|f |p = β |g|q μ-almost everywhere.
The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. Hölder's inequality holds even if ‖fg‖1 is infinite, the right-hand side also being infinite in that case. Conversely, if f is in Lp(μ) and g is in Lq(μ), then the pointwise product fg is in L1(μ).
Hölder's inequality is used to prove the Minkowski inequality, which is the triangle inequality in the space Lp(μ), and also to establish that Lq(μ) is the dual space of Lp(μ) for p ∈ [1, ∞).
Hölder's inequality (in a slightly different form) was first found by Leonard James Rogers (1888). Inspired by Rogers' work, Hölder (1889) gave another proof as part of a work developing the concept of convex and concave functions and introducing Jensen's inequality, which was in turn named for work of Johan Jensen building on Hölder's work.