GloVe

GloVe, coined from Global Vectors, is a model for distributed word representation. The model is an unsupervised learning algorithm for obtaining vector representations for words. This is achieved by mapping words into a meaningful space where the distance between words is related to semantic similarity. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space. It is developed as an open-source project at Stanford and was launched in 2014. As log-bilinear regression model for unsupervised learning of word representations, it combines the features of two model families, namely the global matrix factorization and local context window methods.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.