Generalized Fourier series

In mathematics, a generalized Fourier series is a method of expanding a square-integrable function defined on an interval of the real line. The constituent functions of the series expansion form an orthonormal basis of an inner product space. While a Fourier series expansion consists only of trigonometric functions, a generalized Fourier series is a decomposition involving any set of functions satisfying a Sturm-Liouville eigenvalue problem. These expansions find common use in interpolation theory.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.