Gell-Mann–Okubo mass formula

In physics, the Gell-Mann–Okubo mass formula provides a sum rule for the masses of hadrons within a specific multiplet, determined by their isospin (I) and strangeness (or alternatively, hypercharge)

where a0, a1, and a2 are free parameters.

The rule was first formulated by Murray Gell-Mann in 1961 and independently proposed by Susumu Okubo in 1962. Isospin and hypercharge are generated by SU(3), which can be represented by eight hermitian and traceless matrices corresponding to the "components" of isospin and hypercharge. Six of the matrices correspond to flavor change, and the final two correspond to the third-component of isospin projection, and hypercharge.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.