Galileo project

Galileo was an American robotic space program that studied the planet Jupiter and its moons, as well as several other Solar System bodies. Named after the Italian astronomer Galileo Galilei, the Galileo spacecraft consisted of an orbiter and an atmospheric entry probe. It was delivered into Earth orbit on October 18, 1989, by Space Shuttle Atlantis on the STS-34 mission, and arrived at Jupiter on December 7, 1995, after gravity assist flybys of Venus and Earth, and became the first spacecraft to orbit Jupiter. The spacecraft then launched the first probe to directly measure its atmosphere. Despite suffering major antenna problems, Galileo achieved the first asteroid flyby, of 951 Gaspra, and discovered the first asteroid moon, Dactyl, around 243 Ida. In 1994, Galileo observed Comet Shoemaker–Levy 9's collision with Jupiter.

Galileo
Artist's concept of Galileo at Io with Jupiter in the background. The high-gain antenna is fully deployed in this illustration but in reality the antenna could not be extended.
NamesJupiter Orbiter Probe
Mission typeJupiter orbiter
OperatorNASA
COSPAR ID1989-084B
SATCAT no.20298
Websitesolarsystem.nasa.gov/galileo/
Mission duration
  • Planned: 8 years, 1 month, 19 days
  • Jupiter orbit: 7 years, 9 months, 13 days
  • Final: 13 years, 11 months, 3 days
Distance travelled4,631,778,000 km (2.88 billion mi)
Spacecraft properties
Manufacturer
Launch mass
  • Total: 2,560 kg (5,640 lb)
  • Orbiter: 2,220 kg (4,890 lb)
  • Probe: 340 kg (750 lb)
Dry mass
  • Orbiter: 1,880 kg (4,140 lb)
  • Probe: 340 kg (750 lb)
Payload mass
  • Orbiter: 118 kg (260 lb)
  • Probe: 30 kg (66 lb)
Power
  • Orbiter: 570 watts
  • Probe: 730 watt-hours
Start of mission
Launch dateOctober 18, 1989, 16:53:40 (1989-10-18UTC16:53:40) UTC
RocketSpace Shuttle Atlantis
STS-34/IUS
Launch siteKennedy LC-39B
Entered serviceDecember 8, 1995, 01:16 UTC SCET
End of mission
DisposalControlled entry into Jupiter
Decay dateSeptember 21, 2003, 18:57:18 (2003-09-21UTC18:57:19) UTC
Flyby of Venus (gravity assist)
Closest approachFebruary 10, 1990
Distance16,000 kilometers (9,900 mi)
Flyby of Earth (gravity assist)
Closest approachDecember 8, 1990 and December 8, 1992
Distance960 kilometers (600 mi) and 303 kilometers (188 mi)
Flyby of 951 Gaspra
Closest approachOctober 29, 1991
Distance1,601 kilometers (995 mi)
Flyby of 243 Ida
Closest approachAugust 28, 1993
Distance2,400 kilometers (1,500 mi)
Jupiter orbiter
Spacecraft componentOrbiter
Orbital insertionDecember 8, 1995, 01:16 UTC SCET
Jupiter atmospheric probe
Spacecraft componentProbe
Atmospheric entryDecember 7, 1995, 22:04 UTC SCET
Impact site06°05′N 04°04′W
at entry interface
 

Jupiter's atmospheric composition and ammonia clouds were recorded, as were Io's volcanism and plasma interactions with Jupiter's atmosphere. The data Galileo collected supported the theory of a liquid ocean under the icy surface of Europa, and there were indications of similar liquid-saltwater layers under the surfaces of Ganymede and Callisto. Ganymede was shown to possess a magnetic field and the spacecraft found new evidence for exospheres around Europa, Ganymede, and Callisto. Galileo also discovered that Jupiter's faint ring system consists of dust from impacts on the four small inner moons. The extent and structure of Jupiter's magnetosphere was also mapped.

The primary mission concluded on December 7, 1997, but the Galileo orbiter commenced an extended mission known as the Galileo Europa Mission (GEM), which ran until December 31, 1999. By the time GEM ended, most of the spacecraft was operating well beyond its original design specifications, having absorbed three times the radiation exposure that it had been built to withstand. Many of the instruments were no longer operating at peak performance, but were still functional, so a second extension, the Galileo Millennium Mission (GMM) was authorized. On September 20, 2003, after 14 years in space and 8 years in the Jovian system, Galileo's mission was terminated by sending it into Jupiter's atmosphere at a speed of over 48 kilometers per second (30 mi/s) to eliminate the possibility of contaminating the moons with terrestrial bacteria.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.