Gömböc

The gömböc (Hungarian: [ˈɡømbøt͡s] GUHM-buhts) is the first known physical example of a class of convex three-dimensional homogeneous bodies, called mono-monostatic, which, when resting on a flat surface have just one stable and one unstable point of equilibrium. The existence of this class was conjectured by the Russian mathematician Vladimir Arnold in 1995 and proven in 2006 by the Hungarian scientists Gábor Domokos and Péter Várkonyi by constructing at first a mathematical example and subsequently a physical example. Mono-monostatic shapes exist in countless varieties, most of which are close to a sphere, with a stringent shape tolerance (about one part in a thousand).

The gömböc is the first mono-monostatic shape which has been constructed physically. It has a sharpened top, as shown in the photo. Its shape helped to explain the body structure of some tortoises in relation to their ability to return to an equilibrium position after being placed upside down. Copies of the gömböc have been donated to institutions and museums, and the largest one was presented at the World Expo 2010 in Shanghai, China.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.