Foveated imaging

Foveated imaging is a digital image processing technique in which the image resolution, or amount of detail, varies across the image according to one or more "fixation points". A fixation point indicates the highest resolution region of the image and corresponds to the center of the eye's retina, the fovea.

The location of a fixation point may be specified in many ways. For example, when viewing an image on a computer monitor, one may specify a fixation using a pointing device, like a computer mouse. Eye trackers which precisely measure the eye's position and movement are also commonly used to determine fixation points in perception experiments. When the display is manipulated with the use of an eye tracker, this is known as a gaze contingent display. Fixations may also be determined automatically using computer algorithms.

Some common applications of foveated imaging include imaging sensor hardware and image compression. For descriptions of these and other applications, see the list below. Miniaturized foveated imaging systems can be realized by high-resolution 3D printing of multi-lens objectives directly on a CMOS (Complementary metal-oxide-semiconductor) chip.

Foveated imaging is also commonly referred to as space variant imaging or gaze contingent imaging.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.