Faber–Evans model
The Faber–Evans model for crack deflection, is a fracture mechanics-based approach to predict the increase in toughness in two-phase ceramic materials due to crack deflection. The effect is named after Katherine Faber and her mentor, Anthony G. Evans, who introduced the model in 1983. The Faber–Evans model is a principal strategy for tempering brittleness and creating effective ductility.
Fracture toughness is a critical property of ceramic materials, determining their ability to resist crack propagation and failure. The Faber model considers the effects of different particle morphologies, including spherical, rod-shaped, and disc-shaped particles, and their influence on the driving force at the tip of a tilted and/or twisted crack. The model first suggested that rod-shaped particles with high aspect ratios are the most effective morphology for deflecting propagating cracks and increasing fracture toughness, primarily due to the twist of the crack front between particles. The findings provide a basis for designing high-toughness two-phase ceramic materials, with a focus on optimizing particle shape and volume fraction.