Euglena gracilis
Euglena gracilis | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Phylum: | Euglenozoa |
Class: | Euglenoidea |
Order: | Euglenales |
Family: | Euglenaceae |
Genus: | Euglena |
Species: | E. gracilis |
Binomial name | |
Euglena gracilis Klebs, 1883 | |
Euglena gracilis is a freshwater species of single-celled alga in the genus Euglena. It has secondary chloroplasts, and is a mixotroph able to feed by photosynthesis or phagocytosis. It has a highly flexible cell surface, allowing it to change shape from a thin cell up to 100 µm long to a sphere of approximately 20 µm. Each cell has two flagella, only one of which emerges from the flagellar pocket (reservoir) in the anterior of the cell, and can move by swimming, or by so-called "euglenoid" movement across surfaces. E. gracilis has been used extensively in the laboratory as a model organism, particularly for studying cell biology and biochemistry.
Other areas of their use include studies of photosynthesis, photoreception, and the relationship of molecular structure to the biological function of subcellular particles, among others. Euglena gracilis is the most studied member of the Euglenaceae.
Euglena gracilis was discovered as an effective bioindicator for phenol pollution in freshwater ecosystems and drainage. Their brief generating duration and particular biological reactions make it optimal for measuring phenol concentrations in the natural environment. The reported morphological abnormalities and unusual cell division reveal important information about the biological impacts of phenol on marine organisms. Using E. gracilis as a bioindicator can determine the level of phenol exposure in marine ecosystems and adopt appropriate mitigation actions to protect water quality and biodiversity.