Diagonally dominant matrix

In mathematics, a square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of the diagonal entry in a row is greater than or equal to the sum of the magnitudes of all the other (off-diagonal) entries in that row. More precisely, the matrix is diagonally dominant if

where denotes the entry in the th row and th column.

This definition uses a weak inequality, and is therefore sometimes called weak diagonal dominance. If a strict inequality (>) is used, this is called strict diagonal dominance. The unqualified term diagonal dominance can mean both strict and weak diagonal dominance, depending on the context.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.