Diacylglycerol lipase

Diacylglycerol lipase, also known as DAG lipase, DAGL, or DGL, is an enzyme that catalyzes the hydrolysis of diacylglycerol, releasing a free fatty acid and monoacylglycerol:

diacylglycerol + H2O ⇌ monoacylglycerol + free fatty acid

diacylglycerol lipase α
DAGLα structure, folded with AlphaFold. Transmembrane domain in marine blue. Catalytic domain in yellow. C-terminal tail in gray. See Structure for details. Click image for higher resolution.
Identifiers
SymbolDAGLA
Alt. symbolsC11orf11
NCBI gene747
HGNC1165
RefSeqNM_006133
UniProtQ9Y4D2
Other data
EC number3.1.1.116
LocusChr. 11 q12.3
Search for
StructuresSwiss-model
DomainsInterPro
diacylglycerol lipase β
DAGLβ structure, folded with AlphaFold. Transmembrane domain in marine blue. Catalytic domain in yellow. Note missing C-terminal tail. See Structure for details. Click image for higher resolution.
Identifiers
SymbolDAGLB
NCBI gene221955
HGNC28923
RefSeqNM_139179
UniProtQ8NCG7
Other data
EC number3.1.1.116
LocusChr. 7 p22.1
Search for
StructuresSwiss-model
DomainsInterPro

DAGL has been studied in multiple domains of life, including bacteria, fungi, plants, insects, and mammals. By searching with BLAST for the previously sequenced microorganism DAGL, Bisogno et al discovered two distinct mammalian isoforms, designated DAGLα (DAGLA) and DAGLβ (DAGLB). Most animal DAGL enzymes cluster into the DAGLα and DAGLβ isoforms.

Mammalian DAGL is a crucial enzyme in the biosynthesis of 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid in tissues. The endocannabinoid system has been identified to have considerable involvement in the regulation of homeostasis and disease. As a result, much effort has been made toward investigating the mechanisms of action and the therapeutic potential of the system's receptors, endogenous ligands, and enzymes like DAGLα and DAGLβ.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.