Cubane

Cubane is a synthetic hydrocarbon compound with the formula C8H8, and that consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons and a member of the prismanes. It was first synthesized in 1964 by Philip Eaton and Thomas Cole. Before this work, Eaton believed that cubane would be impossible to synthesize due to the "required 90 degree bond angles". The cubic shape requires the carbon atoms to adopt an unusually sharp 90° bonding angle, which would be highly strained as compared to the 109.45° angle of a tetrahedral carbon. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths. It is the simplest hydrocarbon with octahedral symmetry.

Cubane
Names
Preferred IUPAC name
Cubane
Systematic IUPAC name
Pentacyclo[4.2.0.02,5.03,8.04,7]octane
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H Y
    Key: TXWRERCHRDBNLG-UHFFFAOYSA-N Y
  • InChI=1/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H
    Key: TXWRERCHRDBNLG-UHFFFAOYAL
SMILES
  • C12C3C4C1C5C2C3C45
Properties
C8H8
Molar mass 104.15 g/mol
Appearance Transparent crystalline solid
Density 1.29 g/cm3
Melting point 133.5 °C (272.3 °F; 406.6 K)
Boiling point 161.6 °C (322.9 °F; 434.8 K)
Related compounds
Related hydrocarbons
Cuneane
Dodecahedrane
Tetrahedrane
Prismane
Prismane C8
Related compounds
Octafluorocubane
Octanitrocubane
Octaazacubane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Having high potential energy and kinetic stability makes cubane and its derivative compounds useful for controlled energy storage. For example, octanitrocubane and heptanitrocubane have been studied as high-performance explosives. These compounds also typically have a very high density for hydrocarbon molecules. The resulting high energy density means a large amount of energy can be stored in a comparably smaller amount of space, an important consideration for applications in fuel storage and energy transport. Furthermore, their geometry and stability make them suitable isosteres for benzene rings.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.