Control of chaos

In lab experiments that study chaos theory, approaches designed to control chaos are based on certain observed system behaviors. Any chaotic attractor contains an infinite number of unstable, periodic orbits. Chaotic dynamics, then, consists of a motion where the system state moves in the neighborhood of one of these orbits for a while, then falls close to a different unstable, periodic orbit where it remains for a limited time and so forth. This results in a complicated and unpredictable wandering over longer periods of time.

Control of chaos is the stabilization, by means of small system perturbations, of one of these unstable periodic orbits. The result is to render an otherwise chaotic motion more stable and predictable, which is often an advantage. The perturbation must be tiny compared to the overall size of the attractor of the system to avoid significant modification of the system's natural dynamics.

Several techniques have been devised for chaos control, but most are developments of two basic approaches: the Ott–Grebogi–Yorke (OGY) method and Pyragas continuous control. Both methods require a previous determination of the unstable periodic orbits of the chaotic system before the controlling algorithm can be designed.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.