Congruum

In number theory, a congruum (plural congrua) is the difference between successive square numbers in an arithmetic progression of three squares. That is, if , , and (for integers , , and ) are three square numbers that are equally spaced apart from each other, then the spacing between them, , is called a congruum.

The congruum problem is the problem of finding squares in arithmetic progression and their associated congrua. It can be formalized as a Diophantine equation: find integers , , and such that

When this equation is satisfied, both sides of the equation equal the congruum.

Fibonacci solved the congruum problem by finding a parameterized formula for generating all congrua, together with their associated arithmetic progressions. According to this formula, each congruum is four times the area of a Pythagorean triangle. Congrua are also closely connected with congruent numbers: every congruum is a congruent number, and every congruent number is a congruum multiplied by the square of a rational number.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.