Conformal connection

In conformal differential geometry, a conformal connection is a Cartan connection on an n-dimensional manifold M arising as a deformation of the Klein geometry given by the celestial n-sphere, viewed as the homogeneous space

O+(n+1,1)/P

where P is the stabilizer of a fixed null line through the origin in Rn+2, in the orthochronous Lorentz group O+(n+1,1) in n+2 dimensions.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.