Coherent space

In proof theory, a coherent space (also coherence space) is a concept introduced in the semantic study of linear logic.

Let a set C be given. Two subsets S,TC are said to be orthogonal, written ST, if ST is ∅ or a singleton. The dual of a family F ⊆ ℘(C) is the family F of all subsets SC orthogonal to every member of F, i.e., such that ST for all TF. A coherent space F over C is a family of C-subsets for which F = (F ) .

In Proofs and Types coherent spaces are called coherence spaces. A footnote explains that although in the French original they were espaces cohérents, the coherence space translation was used because spectral spaces are sometimes called coherent spaces.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.