Centered octahedral number
A centered octahedral number or Haüy octahedral number is a figurate number that counts the number of points of a three-dimensional integer lattice that lie inside an octahedron centered at the origin. The same numbers are special cases of the Delannoy numbers, which count certain two-dimensional lattice paths. The Haüy octahedral numbers are named after René Just Haüy.
Haüy construction of an octahedron by 129 cubes | |
Named after | René Just Haüy |
---|---|
Publication year | 1801 |
Total no. of terms | Infinity |
Subsequence of | Polyhedral numbers, Delannoy numbers |
Formula | |
First terms | 1, 7, 25, 63, 129, 231, 377 |
OEIS index |
|
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.