Born–Landé equation

The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

where:

  • NA = Avogadro constant;
  • M = Madelung constant, relating to the geometry of the crystal;
  • z+ = numeric charge number of cation
  • z = numeric charge number of anion
  • e = elementary charge, 1.6022×1019 C
  • ε0 = permittivity of free space
    ε0 = 1.112×1010 C2/(J·m)
  • r0 = distance between closest cation [ +ve ] & anion [ -ve ].
  • n = Born exponent, typically a number between 5 and 12, determined experimentally by measuring the compressibility of the solid, or derived theoretically.
  • E = Lattice energy is expressed by 'E' .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.