Bond cleavage

In chemistry, bond cleavage, or bond fission, is the splitting of chemical bonds. This can be generally referred to as dissociation when a molecule is cleaved into two or more fragments.

In general, there are two classifications for bond cleavage: homolytic and heterolytic, depending on the nature of the process. The triplet and singlet excitation energies of a sigma bond can be used to determine if a bond will follow the homolytic or heterolytic pathway. A metalmetal sigma bond is an exception because the bond's excitation energy is extremely high, thus cannot be used for observation purposes.

In some cases, bond cleavage requires catalysts. Due to the high bond-dissociation energy of C−H bonds, around 100 kcal/mol (420 kJ/mol), a large amount of energy is required to cleave the hydrogen atom from the carbon and bond a different atom to the carbon.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.