Blotto game
A Colonel Blotto game is a type of two-person constant-sum game in which the players (officers) are tasked to simultaneously distribute limited resources over several objects (battlefields). In the classic version of the game, the player devoting the most resources to a battlefield wins that battlefield, and the gain (or payoff) is equal to the total number of battlefields won.
The game was first proposed by Émile Borel in 1921. In 1938 Borel and Ville published a particular optimal strategy (the "disk" solution). The game was studied after the Second World War by scholars in Operation Research, and became a classic in game theory. Gross and Wagner's 1950 research memorandum states Borel's optimal strategy, and coined the fictitious Colonel Blotto and Enemy names. For three battlefields or more, the space of pure strategies is multi-dimensional (two dimensions for three battlefields) and a mixed strategy is thus a probability distribution over a continuous set. The game is a rare example of a non trivial game of that kind where optimal strategies can be explicitly found.
In addition to military strategy applications, the Colonel Blotto game has applications to political strategy (resource allocations across political battlefields), network defense, R&D patent races, and strategic hiring decisions. Consider two sports teams with must spend budget caps (or two Economics departments with use-or-lose grants) are pursuing the same set of candidates, and must decide between many modest offers or aggressive pursuit of a subset of candidates.