Beta-binomial distribution

In probability theory and statistics, the beta-binomial distribution is a family of discrete probability distributions on a finite support of non-negative integers arising when the probability of success in each of a fixed or known number of Bernoulli trials is either unknown or random. The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics, empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.

Probability mass function
Cumulative distribution function
Notation
Parameters nN0 — number of trials
(real)
(real)
Support x ∈ {0, …, n}
PMF

where is the beta function
CDF

where 3F2(a;b;x) is the generalized hypergeometric function
Mean
Variance
Skewness
Excess kurtosis See text
MGF where is the hypergeometric function
CF
PGF

The beta-binomial is a one-dimensional version of the Dirichlet-multinomial distribution as the binomial and beta distributions are univariate versions of the multinomial and Dirichlet distributions respectively. The special case where α and β are integers is also known as the negative hypergeometric distribution.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.