Besicovitch inequality

In mathematics, the Besicovitch inequality is a geometric inequality relating volume of a set and distances between certain subsets of its boundary. The inequality was first formulated by Abram Besicovitch.

Consider the n-dimensional cube with a Riemannian metric . Let

denote the distance between opposite faces of the cube. The Besicovitch inequality asserts that

The inequality can be generalized in the following way. Given an n-dimensional Riemannian manifold M with connected boundary and a smooth map , such that the restriction of f to the boundary of M is a degree 1 map onto , define

Then .

The Besicovitch inequality was used to prove systolic inequalities on surfaces.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.