Bertrand's ballot theorem
In combinatorics, Bertrand's ballot problem is the question: "In an election where candidate A receives p votes and candidate B receives q votes with p > q, what is the probability that A will be strictly ahead of B throughout the count?" The answer is
The result was first published by W. A. Whitworth in 1878, but is named after Joseph Louis François Bertrand who rediscovered it in 1887.
In Bertrand's original paper, he sketches a proof based on a general formula for the number of favourable sequences using a recursion relation. He remarks that it seems probable that such a simple result could be proved by a more direct method. Such a proof was given by Désiré André, based on the observation that the unfavourable sequences can be divided into two equally probable cases, one of which (the case where B receives the first vote) is easily computed; he proves the equality by an explicit bijection. A variation of his method is popularly known as André's reflection method, although André did not use any reflections.
Bertrand's ballot theorem is related to the cycle lemma. They give similar formulas, but the cycle lemma considers circular shifts of a given ballot counting order rather than all permutations.