Arthur Cayley
Arthur Cayley FRS (/ˈkeɪli/; 16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics.
Arthur Cayley | |
---|---|
Born | Richmond, Surrey, UK | 16 August 1821
Died | 26 January 1895 73) Cambridge, England | (aged
Education | King's College School |
Alma mater | Trinity College, Cambridge (BA, 1842) |
Known for | |
Awards |
|
Scientific career | |
Fields | Mathematics |
Institutions | Trinity College, Cambridge |
Academic advisors |
|
Notable students |
As a child, Cayley enjoyed solving complex maths problems for amusement. He entered Trinity College, Cambridge, where he excelled in Greek, French, German, and Italian, as well as mathematics. He worked as a lawyer for 14 years.
He postulated what is now known as the Cayley–Hamilton theorem—that every square matrix is a root of its own characteristic polynomial, and verified it for matrices of order 2 and 3. He was the first to define the concept of a group in the modern way—as a set with a binary operation satisfying certain laws. Formerly, when mathematicians spoke of "groups", they had meant permutation groups. Cayley tables and Cayley graphs as well as Cayley's theorem are named in honour of Cayley.