ADAR

The double-stranded RNA-specific adenosine deaminase enzyme family are encoded by the ADAR family genes. ADAR stands for adenosine deaminase acting on RNA. This article focuses on the ADAR proteins; This article details the evolutionary history, structure, function, mechanisms and importance of all proteins within this family.

ADAR
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesADAR, ADAR1, ADAR2, ADAR3, ADARB1, ADARB2, ADAR1p150, ADAR1p110, IFI-4, DSH, P136, adenosine deaminase RNA specific, DRADA, IFI4, AGS6, G1P1, K88DSRBP, DSRAD
External IDsOMIM: 146920 MGI: 1889575 HomoloGene: 9281 GeneCards: ADAR
Orthologs
SpeciesHumanMouse
Entrez

103

56417

Ensembl

ENSG00000160710

ENSMUSG00000027951

UniProt

P55265

Q99MU3

RefSeq (mRNA)

NM_001038587
NM_001146296
NM_019655
NM_001357958

RefSeq (protein)

NP_001020278
NP_001102
NP_001180424
NP_056655
NP_056656

NP_001033676
NP_001139768
NP_062629
NP_001344887

Location (UCSC)Chr 1: 154.58 – 154.63 MbChr 3: 89.62 – 89.66 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

ADAR enzymes bind to double-stranded RNA (dsRNA) and convert adenosine to inosine (hypoxanthine) by deamination. ADAR proteins act post-transcriptionally, changing the nucleotide content of RNA. The conversion from adenosine to inosine (A to I) in the RNA disrupts the normal A:U pairing, destabilizing the RNA. Inosine is structurally similar to guanine (G) which leads to inosine to cytosine (I:C) binding. Inosine typically mimics guanosine during translation but can also bind to uracil, cytosine, and adenosine, though it is not favored.

Codon changes may arise from RNA editing leading to changes in the coding sequences for proteins and their functions. Most editing sites are found in noncoding regions of RNA such as untranslated regions (UTRs), Alu elements, and long interspersed nuclear elements (LINEs). Codon changes can give rise to alternate transcriptional splice variants. ADAR impacts the transcriptome in editing-independent ways, likely by interfering with other RNA-binding proteins.

Mutations in this gene are associated with several diseases including HIV, measles, and melanoma. Recent research supports a linkage between RNA-editing and nervous system disorders such as amyotrophic lateral sclerosis (ALS). Atypical RNA editing linked to ADAR may also correlate to mental disorders such as schizophrenia, epilepsy, and suicidal depression.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.