e (mathematical constant)
The number e is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of the natural logarithm function. It is the limit of as n tends to infinity, an expression that arises in the computation of compound interest. It is the value at 1 of the (natural) exponential function, commonly denoted It is also the sum of the infinite series
Euler's number | |
---|---|
e 2.71828... | |
General information | |
Type | Transcendental |
History | |
Discovered | 1685 |
By | Jacob Bernoulli |
First mention | Quæstiones nonnullæ de usuris, cum solutione problematis de sorte alearum, propositi in Ephem. Gall. A. 1685 |
Named after |
|
Part of a series of articles on the |
mathematical constant e |
---|
Properties |
|
Applications |
Defining e |
|
People |
|
Related topics |
|
There are various other characterizations; see § Definitions and § Representations.
The number e is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted . Alternatively, e can be called Napier's constant after John Napier. The constant was discovered by the Swiss mathematician Jacob Bernoulli while studying compound interest.
The number e is of great importance in mathematics, alongside 0, 1, π, and i. All five appear in one formulation of Euler's identity and play important and recurring roles across mathematics. Like the constant π, e is irrational, meaning that it cannot be represented as a ratio of integers, and moreover it is transcendental, meaning that it is not a root of any non-zero polynomial with rational coefficients. To 40 decimal places, the value of e is: